Какие самолеты бывают: виды и названия. Какие бывают самолеты — виды и классификация Виды самолетов по назначению

Основные агрегаты самолета

Самолеты относятся к летательным аппаратам тяжелее воздуха, им характерен аэродинамический принцип полета. У само­летов подъемная сила Y создается за счет энергии воздушного по­тока, омывающего несущею поверхность, которая неподвижно закреплена от­носительно корпуса, а поступательное движение в заданном направ­лении обеспечивается тягой силовой установки (СУ) самолета.

Различные типы самолётов имеют одни и те же основные агрегаты (составные части): крыло , вертикальное (ВО) и горизонтальное (ГО) оперение , фюзеляж , силовую установку (СУ) и шасси (рис 2.1).

Рис. 2.1. Основные элементы конструкции самолета

Крыло самолета1 создает подъемную силу и обеспечивает попе­речную устойчивость самолету при его полете.

часто крыло является силовой базой для размещения шасси, двигателей, а его внутренние объемы используют для размещения топлива, оборудования, различных узлов и агрегатов функциональных систем.

Для улучшения взлетно-посадочных характеристик (ВПХ) современных самолетов на крыле устанавливаются средства механизации по передней и задней кромкам. По передней кромке крыла размещают предкрылки , а по задней - закрылки10 , интерцепторы12 и элероны-интерцепторы .

В силовом отношении крыло представляет собой балку сложной конструкции, опорами которой являются силовые шпангоуты фюзеляжа.

Элероны11 являютсяорганами поперечного управления. Они обеспечивают поперечную управляемость самолета.

В зависимости от схемы и скорости полета, геометрических па­раметров, конструкционных материалов и конструктивно-силовой схемы масса крыла может составлять до 9…14 % от взлетной массы само­лета.

Фюзеляж13 объединяет основные аг­регаты самолета в единое целое, т.е. обеспечивает замыкание сило­вой схемы самолета.

Внутренний объем фюзеляжа служит для размеще­ния экипажа, пассажиров, грузов, оборудования, почты, багажа, средств спасения людей на случай возникновения аварийных ситуа­ций. В фюзеляжах грузовых самолетов предусмотрены развитые погрузочно-разгрузочные системы, устройства быстрой и надежной швар­товки грузов.

Функцию фюзеляжа у гидросамолётов выполняет лодка, которая позволяет производить взлет и посадку на воду.

фюзеляж в силовом отношении является тонкостенной балкой, опорами которой являются лонжероны крыла, с которыми он связан через узлы силовых шпангоутов.

масса констру­кции фюзеляжа составляет 9…15 % от взлетной массы самолета.

Вертикальное оперение5 состоит из неподвижной части киля4 и руля направления (РН) 7 .

Киль 4 обеспечивает самолету путевую устойчивость в плоскости X0Z , а РН - путевую управляемость относительно оси 0y .

Триммер РН 6 обеспечивает снятие длительных нагрузок с педалей, например, при отказе двигателя.

Горизонтальное оперение9 включает в себя неподвижную или ограниченно подвижную часть (стабилизатор2 ) и подвижную часть – руль высоты (РВ) 3 .

Стабилизатор 2 придает самолету продольную устойчивость, а РВ 3 - продольную управляемость. РВ может нести на себе трим­мер 8 для разгрузки штурвальной колонки.

Масса, конструкции ГО и ВО обычно не превышает 1,3…3 % от взлетной массы самолета.

Шасси самолета 16 относится к взлетно-посадочным устройствам (ВПУ), которые обеспечивают разбег, взлет, посадку, пробег и маневрирование само­лета при движении по земле.

Число опор и расположение их относительно центра масс (ЦМ) самолета за­висит от схем шасси и особенностей эксплуатации самолета.

Шасси самолета, показанного на рис.2.1, имеет две основные опоры16 и одну носовую опору17 . Каждая опора включает в себя силовую стой­ку18 и опорные элементы - колеса15 . Каждая опора может иметь несколько стоек и несколько колес.

Чаще всего шасси самолета дела­ют убирающимися в полете, поэтому для его размещения предусматри­вают специальные отсеки в фюзеляже 13. Возможна уборка и размещение основных опор шасси в специальных гондолах (или мотогондолах), обтекателях14 .

Шасси обеспечивает поглощение кинетической энергии удара при посадке и энергии торможения на пробеге, рулении и при маневрировании самолета по аэродрому.

самоле­ты-амфибии могут совершать взлет и посадку, как с наземных аэродромов, так и с водной поверхности.

Рис.2.2. Шасси самолета-амфибии.

на корпусе гидросамолета устанавливают колесно­е шасси, а под крылом размещают поплавки1 ,2 (рис.2.2).

Относительная масса шасси обычно составляет 4…6% от взлетной массы самолета.

Силовая установка 19 (см.рис.2.1), обеспечивает создание силы тяги самолета.Она состоит из двигателей, а также сис­тем и устройств, обеспечивающих их работу в условиях летной и наземной эксплуатации самолета.

У поршневых двигателей сила тяги создается воздушным винтом, у турбовинтовых - воздушным винтом и частично реакцией газов, у реактивных - реакцией газов.

В СУ входят: узлы крепления двигателей, гондола, управление СУ, входные и выходные устройства двигателей, топливная и масляная системы, системы запуска двигателя, противопожарная и противообледенительная системы.

Относительная масса СУ в зависимости от типа двигателей и схе­мы размещения их на самолете может достигать 14…18 % от взлетной мас­сы самолета.

2.2. Технико-экономические и летно-технические
характеристики самолетов

Технико-экономическими характеристиками самолетов являются:

Относительная масса полезной нагрузки:

`m пн = m пн /m 0

где m пн - масса полезной нагрузки;

m 0 - взлетная масса самолета;

Относительная масса максимальной платной нагрузки:

`m кнmах = m кнmах / m 0

где m кнmах масса максимальной коммерческой нагрузки;

Максимальная часовая производительность:

П ч = m кнmах ∙v рейс

где v рейс - рейсовая скорость самолета;

Расход топлива на единицу производительности q Т

К основным летно-техническим характеристикам самолетов отно­сят:

Максимальную крейсерскую скорость v кр.mах ;

Крейсерскую экономическую скорость V к p .эк ;

Высоту крейсерского полета Н к p ;

Дальность полета с максимальной платной нагрузкой L ;

Среднее значение аэродинамического качества К в полете;

Скороподъемность;

Грузоподъемность, которая определяется массой пассажиров, грузов, багажа, перевозимой на самолете при заданной полетной мас­се и запасе топлива;

Взлетно-посадочные характеристики (ВПХ) самолета.

Основными параметрами, характеризующими ВПХ, являются ско­рость захода на посадку - V з.п ; посадочная скорость - V п ;скорость отрыва при взлете - V omp ; длина разбега при взле­те - l раз ; длина пробега при посадке - l np ; максимальное значение коэффициента подъемной силы в посадочной конфигура­ции крыла - С у max п ;максимальное значение коэффициента подъемной силы во взлетной конфигурации крыла С у max взл

Классификация самолетов

Классификацию самолетов проводят по многим критериям.

Одним из основных критериев классификации самолетов являет­ся критерий по назначению . этот критерий предопределяет летно-технические характеристики, геометрические параметры, компоновку и состав функциональных систем самолета.

По своему назначению самолеты подразделяют на гражданские и военные . Как первые, так и вторые самолеты классифицируют в зависимости от вида выполняемых задач.

Ниже рассмотрена классификация только гражданских самолетов.

Гражданские самолеты предназначены для перевозки пассажиров, почты, грузов, а также для решения разнообразных народнохозяйственных задач.

Самолеты под­разделяют на пассажирские , грузовые , экспериментальные , учебно-тренировочные , а также на самолеты целевого народнохозяйствен­ного назначения .

Пассажирские самолеты в зависимости от дальности полета и грузоподъемности подразделяют на:

- дальние магистральные самолеты – дальность полета L >6000 км;

- средние магистральные самолеты - 2500 < L < 6000 км;

- ближние магистральные самолеты - 1000< L < 2500 км;

- самолеты для местных воздушных линий (МВЛ) - L <1000 км.

Дальние магистральные самолеты (рис. 2.3) с дальностью поле­та более 6000 км, обычно, оснащаются СУ из четырех ТРДД или винтовентиляторных двигателей, что позволяет повысить безопас­ность полета в случае отказа одного или двух двигателей.

Средние магистральные самолеты (рис. 2.4, рис. 2 .5) имеют СУ из двух-трех двигателей.

Ближнемагистральные самолеты (рис. 2.6) при дальности полета до 2500 км имеют СУ из двух-трех двигателей.

Самолеты местных воздушных авиалиний (МВЛ) эксплуатируются на авиационных трассах протяжен­ностью менее 1000 км, а их СУ может состоять из двух, трех и да­же четырех двигателей. Увеличение числа двигателей до четырех обу­словлено стремлением обеспечить высокий уровень безопасности поле­тов при большой интенсивности взлетов-посадок, характерных для са­молетов МВЛ.

К самолетам МВЛ можно отнести административные само­леты, которые рассчитаны на перевозку 4…12 пассажиров.

Грузовые самолеты обеспечивают перевозку грузов. Эти самолеты в зависимости от дальности полета и грузоподъемности могут подразделяться аналогично пассажирским. перевозка грузов может осуществляться как внутри грузовой кабины (рис.2.7), так и на внешней подвеске фюзеляжа (рис. 2.8).

Учебно-тренировочные самолеты обеспечивают подготовку и тренировку летного состава в учебных заведениях и центрах подготовки гражданской авиации (рис.2.9)Такие самолеты часто изготовляют двухместными (инструктор и стажер)

Экспериментальные самолеты создаются для решения конкретных научных проблем, проведения натурных исследований непосредственно в полете, когда необходима проверка выдвигаемых гипотез и конструктивных решений.

Самолеты народнохозяйственного назначения в зависимости от целевого использования разделяются на сельскохозяйственные, патрульные, наблюдения за нефте- и газопроводами, лесными массивами, прибрежной зоной, дорожным движением, санитарные, ледовой разведки, аэрофотосъемки и др.

Наряду со специально спроектированными для этих целей самолетами под целевые задачи могут переоборудоваться самолеты МВЛ малой грузоподъемности.

Рис. 2.7. Грузовой самолет

Рис. 2.10
Рис. 2.9
Рис.2.8

Рис. 2.8. Перевозка грузов на внешней подвеске

Рис. 2.9. Учебно-тренировочный самолет

Рис. 2.10. Самолет народнохозяйственного назначения

Аэродинамическую компоновку самолета характеризует число, внешняя форма несущих поверхностей и взаимное расположение крыла, оперения и фюзеляжа.

В основу классификации аэродинамических компоновок положено два признака:

- форма крыла ;

- расположение оперени я.

В соответствии с первым признаком выделяют шесть типов аэродинамических компоновок:

- с прямым и трапециевидным крылом;

- со стреловидным крылом;

- с треугольным крылом;

- с прямым крылом малого удлинения;

- с кольцевым крылом;

- с круглым крылом .

Для современных гражданских самолетов практически использу­ют первые два и частично третий тип аэродинамических компоновок.

Согласно второму типу классификации выделяют следующие три варианта аэродинамических компоновок самолетов:

Нормальной (классической) схемы;

Схемы " утка " ;

Схема "бесхвостка".

Разновидностью схемы "бесхвостка" является схема "летающее крыло".

Самолеты нормальной схемы (см.рис.2.5, 2.6) имеют ГО, расположенное за крылом. Эта схема получила господствующее распространение на самолетах гражданской авиации.

Основные достоинства нормальной схемы:

Возможность эффективного использования механизации крыла;

Легкое обеспечение балансировки самолета с выпущенными закрылками;

Уменьшение длины но­совой части фюзеляжа. Это улучшает обзор пило­ту и уменьшает площадь ВО, так как укороченная носовая часть фюзеляжа вызывает появление меньшего дестабилизирующего путевого момента;

Возможность уменьшения площадей ВО и ГО, так как плечи ГО и ВО значительно больше, чем у других схем.

недоста­тки нормальной схемы:

ГО создает отрицательную подъемную силу практически на всех режимах полета. Это приводит к уменьшению подъемной силы само­лета. Особенно на переходных режимах полета при взлете и посадке;

ГО находится в возмущенном воздушном потоке за кры­лом, что отрицательно сказывается на его работе.

Для выноса ГО из "аэродинамической тени" крыла или из "спутной струи" закрылков на переходных режимах полета его смещают относительно крыла по высоте (рис.2.11, а), выносят его на середину киля (рис.2.11;б) или на верх киля (рис.2.11, в).

Рис. 2.12
Рис. 2.11

Рис. 2.11 Схемы размещения горизонтального оперения

а. ВО., смещенное относительно крыла по высоте;

б. ВО расположено на середине киля (крестообразное оперение);

в. Т- образное оперение;

г. v - образное оперение.

В практике самолетостроения известны случаи использования на самолете комбинированного, так назы­ваемого v -образного опе­рения (рис. 2.12). функции ГО и ВО в этом случае выполняют две поверхности, разнесенные под углом относительно друг друга. Рули, размещенные на этих поверхностях, при синхрон­ном отклонении вверх и вниз работают как РВ, а при отклонении одного руля вверх, а другого вниз достигается управление самоле­том в путевом отношении.

Достаточно часто на самоле­тах может применяться двухкилевое и даже трехкилевое ВО.

При аэродинами­ческой компоновке самолета по схеме "утка" на ГО разме­щают перед крылом на носовой части фюзеляжа (рис.2.13)

Достоинствами схемы "утка" являются:

Размещение ГО в невозмущенном воздушном потоке;

Возможность уменьшения размеров крыла, так как ГО стано­вится несущим, т.е. участвует в создании подъемной силы самоле­та;

Достаточно легкое парирование возникающего пикирующего мо­мента при отклонении механизации крыла отклонением ГО;

Рис. 2.13 Компоновка самолета по схеме "утка"

Увеличение плеча ГО на более 30 %, чем у нормальной схемы, что позволяет уменьшить площадь крыла;

При достижении больших углов атаки срыв потока на ГО воз­никает раньше, чем на крыле, что практически устраняет опасность выхода самолета на закритические углы атаки и сваливание его в штопор.

У самолета, выполненного по схеме "утка", смещение положе­ния фокуса назад при переходе от М <1 к М>1 меньше, чем у са­молетов нормальной схемы, поэтому увеличение степени продольной устойчивости наблюдается в меньшей мере.

Недостатками данной схемы являются:

Снижение несущей способности крыла на 10-15 % из-за ско­са потока от ГО;

Сравнительно малое плечо ВО, приводящее к увеличению пло­щади ВО, а иногда и к установке двух килей для увели­чения путевой устойчивости. Это компенсирует дестабилизирующий мо­мент, создаваемый удлиненной носовой частью фюзеляжа.

Схема "бесхвостка" характеризуется отсутстви­ем ГО (см. рис. 1.13), при этом функции ГО перекладываются на кры­ло. Самолеты, выполненные по такой схеме, могут не иметь фюзе­ляжа, в этом случае их называют "летающим крылом". Для таких са­молетов характерно минимальное лобовое сопротивление.

Схема "бесхвостка" имеет следующие достоинства:

Так как на таких самолетах используются треугольные крылья, то при больших размерах бортовой нервюры можно уменьшить относи­тельную толщину профиля, обеспечив рациональное использование объема крыла для размещения топлива;

Отсутствие нагрузок ГО позволяет облегчить хвостовую часть фюзеляжа;

Уменьшается стоимость и масса планера, так как отсутству­ет ГО, по этой же причине уменьшается сопротивление трения самолета из-за уменьшения площади обтекаемой воздушным потоком поверхности;

Значительные геометрические размеры бортовой нервюры обе­спечивают возможность создать эффект "воздушной подушки " на ре­жиме посадки самолета;

Так как в схеме "бесхвостка" применяют крылья двойной стреловидности, то на взлетном режиме происходит существенней прирост коэффициента подъемной силы.

Среди недостатков этой схемы наиболее существенным являются:

Невозможность полного использования несущей способности крыла на посадке;

Снижение потолка самолета из-за уменьшения аэродинамичес­кого качества, что объясняется удержанием элевонов в верхнем отклоненном положении для достижения наибольшего угла атаки кры­ла;

Сложность, а иногда и невозможность балансировки самоле­та при выпущенных закрылках;

Сложность обеспечения путевой устойчивости самолета из-за малого плеча ВО, поэтому иногда устанавливают три киля (см. рис. 1.13).

В практике опытного авиастроения можно встретить варианты с комбинацией основных схем в одном самолете.

Возможен вариант, когда на самолете применяют два ГО - одно перед крылом и второе за ним. При реализации схемы "тандем", самолет имеет почти соизмеримые по площади крыло и ГО. Схему "тандем" можно рассматривать как промежуточную между нормальной схемой и схемой "утка", благодаря чему расширяется эксплуатационный диапазон центровок при сравнительно малых потерях аэродинамического качества на ба­лансировку самолета.

Основными конструктивными признаками, по которым проводят классификацию самолетов, служат:

Число и расположение крыльев;

Тип фюзеляжа;

Тип двигателей, число и размещение их на самолете;

Схема шасси, характеризуемая количеством опор и их взаим­ным расположением относительно ЦМ самолета.

В зависимости от числа крыльев различают монопланы и бипланы.

Схема моноплана доминирует в самолетостро­ении, и большинство самолетов выполняется именно по этой схеме, что обусловлено меньшим лобовым сопротивлением моноплана и воз­можностью увеличения роста скоростей полета.

Самолеты схемы "биплан" (рис.2.16) отличаются высокой
маневренностью, но они тихоходны, поэтому данную схему реализуют для самолетов специального назначения, например, для сельскохозяйственных.

Рис 2. 16 Самолет схемы "биплан"

По расположению крыла относитель­но фюзеляжа самолеты могут выполняться по схеме "низкоплан" (рис.2.17, а), "среднеплан" (рис. 2.17, б) и "высокоплан" (рис.2.17, в).

Рис.2.17. Различные схемы расположения крыла

Схема "низкоплан" наименее выгодна в аэроди­намическом отношении, так как в зоне сопряжения крыла с фюзеля­жем нарушается плавность обтекания и возникает дополнительное сопротивление из-за интерференции системы "крыло-фюзеляж". Дан­ный недостаток можно существенно уменьшить постановкой зализов, обеспечивая устранение диффузорного эффекта.

Размещение ГТД в корневой части крыла позволя­ет использовать
эжекторный эффект от струи двигателя, который по­лучил название активного зализа.

Низкоплан имеет бо­лее высокое расположение нижнего обвода фюзеляжа над поверх­ностью земли. Это связано с необходимостью исключения касания концом крыла поверхности ВПП при посад­ке с креном, а также с обеспечением безопасной работы СУ при размещении двигателей на крыле. В этом случае усложняется процесс выгрузки-погрузки грузов, ба­гажа, а также посадку-высадку пассажиров. Этого недостатка можно избежать, если оснастить шасси самолета механизмом "при­седания".

Схему "низкоплан" наиболее часто используют для пассажирс­ких самолетов, так как она обеспечивает большую по сравнению с другими вариантами безопасность при аварийной посадке на грунт и воду. При аварийной посадке на грунт с убранным шасси крыло воспринима­ет энергию удара, защищая пассажирскую кабину. При посадке на воду самолет погружается в воду по крыло, которое сообщает фюзе­ляжу дополнительную плавучесть и упрощает организацию работ, связанных с эвакуацией пассажиров.

Важным достоинством схемы "низкоплан" является наименьшая масса конструкции, так как основные опоры шасси чаще всего свя­заны с крылом и их габариты и масса меньше, чем у высокоплана. В сравнении с высокопланом, имеющим шасси на фюзеляже, низкоплан имеет меньшую массу, так как не требуется утяжеления фюзеляжа, связанного с креплением к нему основных опор шасси.

Низкоплан с размещением основных опор на крыле сохраняет основное правило: опорой самолету служит несущая поверхность. Это правило выдер­живается на всех эксплуатационных режимах, как в полете, так и при взлете - посадке. Крыло в последнем случае опирается при пробеге и разбеге на шасси. Благодаря этому удается унифицировать силовую схему, определяющую пути передачи максимальных нагрузок, и снизить массу конструкции самолета в целом. Рассмотренные дос­тоинства стали причиной господствующего положения схемы "низко­план" на пассажирских самолетах.

Схема "среднеплан" (рис. 2. 17, б) для пассажирских и грузовых самолетов чаще всего не применяется, так как кессон крыла (его силовая часть) не может быть размещен в пассажирской или грузовой кабине.

С ростом взлетных масс и параметров самолетов появляется возможность приблизить компоновку крыла широкофюзеляжных самолетов к среднеплану. Крыло в этом случае поднимают до уровня пола пассажирского салона или грузовой кабины, как эти сделано на самолетах А-300, и Боинг-747", Ил-96 и др. Благодаря такому решению удается значительно улучшить аэродинамические характеристики.

В чистом виде схема "среднеплан" может быть реализована на двухпалубных самолетах, где крыло практиче­ски не мешает использованию объемов фюзеляжа для размещения пассажирских салонов, грузовых помещений и оборудования.

Схема "высокоплан" (рис.2.17,в) широко исполь­зуется для грузовых самолетов, а также находит применение на самолетах МВЛ. В этом случае удается получить наименьшее рассто­яние от нижнего обвода фюзеляжа до поверхности ВПП, так как вы­соко расположенное крыло не влияет на выбор высоты фюзеляжа от­носительно земли.

При использовании схемы "высокоплан" появляется возможность свободного маневрирования спецавтотранспорта при техническом об­служивании самолета.

Транспортная эффективность грузовых самоле­тов повышается из-за самого низкого положения пола грузовой ка­бины, позволяющего обеспечить быстроту и легкость погрузки-выгрузки крупногабаритных грузов, самоходной техники, различных мо­дулей и др.

Ресурс двигателей увеличивается, так как они находят­ся на значительном удалении от земли и вероятность попадания твердых частиц с поверхности ВПП в воздухозаборники резко умень­шается.

Отмеченные достоинства высокоплана объясняют то господст­вующее положение, которое заняла данная схема на самолетах тран­спортной авиации в отечественной (Ан-22, Ан-124, Ан-225), зару­бежной (C-141, С-5А, С-17 (США) и др.) практике.

Схема "высокоплан" легко обеспечивает получение нормируемого безопасного расстояния от поверхности ВПП до конца лопасти воздушного винта или нижнего обвода воздухозаборника ГТД. Этим объясняется достаточно частое использование этой схемы на пассажирских самолетах МВЛ (Ан-28 (Украина), F-27 (Голландия), Шорт-360 (Англия), АТР 42, АТР-72 (Франция-Италия)).

Несомненным достоинством схемы "высокоплан" является бо­лее высокое значение С у max благодаря сохранению над фюзеля­жем полностью или частично аэродинамически чистой верхней поверх­ности крыла, большей эффективности механизации крыла за счет снижения концевого эффекта на закрылках, так как борт фюзеляжа и мотогондола играют роль концевых "шайб".

Однако большая масса конструкции планера по сравнению с дру­гими схемами отрицательно сказывается или на полезной нагрузке, или на запасе топлива и дальности полета. Утяжеление конструкции планера объясняется:

Необходимостью увеличения площади ВО на 15-20 % из-за по­падания части ее в зону затенения от крыла;

Возрастанием массы фюзеляжа на 15-20% вследствие увели­чения числа усиленных шпангоутов в зоне крепления основных опор шасси, усиления конструкции зоны нижнего обвода фюзеляжа на слу­чай аварийной посадки с невыпущенным шасси и за счет упрочнений гермокабины.

При креплении основных опор шасси к силовой базе фюзеляжа возникают сложности с обеспечением требуемой колеи.

Малая колея шасси увеличивает нагрузку на одну бетонную плиту,
что может потребовать для эксплуатации самолета более высокий класс аэродрома.

Стремление обеспечить приемлемую колею часто заставляет уве­личивать габаритную ширину усиленных шпангоутов в зоне размеще­ния основных опор, формировать выступающие гондолы шасси и увели­чивать мидель самолета, а значит, и его аэродинамическое сопроти­вление. Как показывает статистика, в этом случае лобовое сопро­тивление гондол шасси может достигать 10-15 % от общего сопроти­вления фюзеляжа.

Меньшая безопасность высокоплана при аварийной посадке на воду и сушу делает иногда невозможным использование этой схемы на самолетах большой пассажировместимости, так как при аварийной посадке на грунт крыло своей массой вместе с двигателями стремится раздавить фюзеляж и пассажирскую кабину. При посадке на воду наблюдается погружение фюзеляжа до нижних обводов крыла и пассажирский салон может оказаться под водой. В этом случае организация работ по спасению пассажиров значитель­но осложняется и эвакуация людей возможна лишь через аварийные люки в верхней части фюзеляжа.

По типу фюзе­ляжа самолеты подразде­ляются на обычные, т.е. выполненные по однофюзеляжной схеме (рис.2.18,а); по двухфюзеляжной схеме и схеме "гондола" (рис.2.18,б).

Рис. 2.18 Классификация самолетов по типу фюзеляжа

Наибольшее распространение получила однофюзеляжная схема, позволяющая получить наиболее выгодную конфигурацию формы фюзе­ляжа с аэродинамической точки зрения, так как лобовое сопротивление в этом случае будет наименьшим по сравнению с другими типами.

При размещении оперения самолета не на фюзеляже, а на двух балках (рис.2.18,б) или замене фюзеляжа гондолой происходит увеличе­ние лобового сопротивления. Для схемы "гондола" (рис. 2.18,б) ха­рактерна плохая обтекаемость гондол, что может привести к неус­тойчивости самолета на больших углах атаки. Поэтому двухбалочная схема "гондола" в практике самолетостроения реализуется редко, в основном, на транспортных самолетах, где вопросы транспортной эф­фективности становятся первостепен­ными. Примером такого решения может служить грузовой самолет "Аргоси" фирмы "Хоукер Сидли".

Рис.2.19 Самолет "Эджи Эркрафт"

По типу двигателей различают самолеты с ПД, ТРД, ТВлД и др.

По числу двигателей самолеты подразделяют на одно-, двух-, трех-, четырех-, шестидвигательные.

На пассажир­ских самолетах из условия обеспечения безопасности полетов число двигателей не должно быть менее двух. Увеличение числа двигателей свыше шести оказывается неоправданным из-за сложностей, связан­ных с обеспечением синхронизации работы отдельных СУ и увеличением времени и трудоемкости работ при техничес­ком обслуживании.

По расположению двигателей дозвуко­вые пассажирские самолеты могут классифицироваться на четыре ос­новные группы: двигатели - на крыле (рис. 2.20, а), двигатели - в корневой части крыла, двигатели - на хвостовой части фюзеляжа (б) и смешанный вариант (в) компоновки двигателей.

При выборе места установки двигателей учитывают особенности общей компоновки самолета, условия эксплуата­ции и обеспечения максимального ресурса двигателей, стремятся получить наименьшее лобовое сопротивление СУ, свести к минимуму потери воздуха в воздухозаборниках.

Так, на самолетах с тремя двигателями целесообразно применять смешанный вариант компоновки (рис.2.20): два двигателя под крылом и третий - в хвостовой части фюзеляжа или на киле.

Рис. 2.20 Схемы установки двигателей на самолетах

На самолетах с двумя двигателями СУ размещают на крыле или на хвостовой части фюзеляжа.

С увеличением степени двухконтурности двигателя его диаметр увеличивается. Поэтому при компоновке двигателей под крылом необхо­димо увеличивать высотушасси для обеспечения нормируемого рас­стояния от обвода мотогондолы до поверхности земли. Это приводит к увеличению массы конструкции самолета и порож­дает ряд проблем, связанных с пассажирами, багажом и техничес­ким обслуживанием. Прежде всего, это касается самолетов МВЛ, ко­торые часто эксплуатируются с аэродромов, не имеющих специально­го оборудования. В то же время эффект разгрузки крыла в полете из-за размещения на нем двигателей значительно снижается, так как с увеличением степени двухконтурности удельная масса ТРД уменьшается.

На рис.2.21 показаны два самолета, конструкция которых соз­давалась исходя из одинаковых требований к платной нагрузке, даль­ности, ВПХ, миделю фюзеляжа и др. На рис.2.21 видно различие между двумя самолетами по высоте расположения относительно земли крыла и фюзеляжа.

Рис.2.21 Влияние двухконтурности двигателей на компоновку самолета

По типу опор шас­си их подразделяют на колесное, лыжное, поплавковое (для гидросамолетов), гусенич­ное и шасси на воздушной подуш­ке.

Преимущественное распрост­ранение получило колесное шас­си, и довольно часто применяют поплавковое.

По схеме шасси самолеты подразделяются на трехопорные и
двухопорные.

Трехопорная схема выполняется в двух вариантах: трехопорная схема с носовой опорой и трехопорная схема с хвостовой опорой. В большинстве случаев на самолетах применяется трехопорная схе­ма с носовой опорой . Второй вариант этой схемы встречается на легких самолетах.

Двухопорная схема шасси на гражданских самолетах практичес­ки не используется.

На тяжелых, особенно транспортных, самолетах получило расп­ространение многоопорная схема шасси. Например, на самолете "Боинг-747" используется пятистоечное шасси, на самолете Ан-225 -шестнадцатистоечное, а на пассажирском Ил-86 - четырехстоечное.

2.4. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К КОНСТРУКЦИИ
САМОЛЕТОВ

Все требования, предъявляемые к конструкции са­молетов, подразделяют на общие , обязательные для всех агрегатов планера, и специальные .

К общим требованиям относят аэродинамические, прочностные и жесткостные, надежности и живучести самолетов, эксплуатационные, ремонтопригодности, технологичности производства самоле­тов, экономические и требования, минимальной массы конструкции планера и функциональных систем.

Аэродинамические требования сводятся к то­му, чтобы влияние формы самолета, его геометрические и проект­ные параметры соответствовали заданным летным данным, полученным при наименьших энергетических затратах. Реализация этих тре­бований предусматривает обеспечение минимального сопротивления самолета, потребных характеристик устойчивости и управляемости, высоких ВПХ, показателей крейсерского режима полета.

Выполнение аэродинамических требований достигается выбором оптимальных зна­чений параметров отдельных агрегатов (частей) самолета, их раци­ональной взаимной компоновкой и высоким уровнем удельных пара­метров.

Прочностные и жесткостные требования предъявляются к каркасу планера и его обшивке, которые должны воспринимать все виды эксплуатационных нагрузок без разрушения, при этом деформации не должны приводить к изменению аэродинами­ческих свойств самолета, не должны возникать опасные вибрации, не должны появляться значительные остаточные деформации. Выпол­нение этих требований обеспечивается выбором рациональной сило­вой схемы и площадей поперечных сечений силовых эле­ментов, а также подбором материалов.

Требования надежности и живучести самолета предусматривают разработку и реализацию конструктивных мероприятий, направленных на обеспечение безопасности по­летов.

Надежность самолета представляет собой способность констру­кции выполнять свои функции с сохранением эксплуатационных пока­зателей в течение установленного срока межрегламентного перио­да, ресурса или другой единицы измерения времени функционирования. Характеристиками надежности являются налет часов на один отказ, количество отказов на один час налета и др.

Повысить надежность самолета можно подбором надежных элементов конструкции, их дублированием (резервированием).

Живучесть самолета определяется способностью конструкции выполнять свои функции при наличии повреждений. Для обеспечения этого требования необходимы конструктивные мероприятия, например, применение статически неопределимых силовых схем, эффективных противопожарных меро­приятий и, главным образом, резервирования. Эти требования особенно важны для обеспечения заданного уровня безопасности поле­тов .

Эксплуатационные требования пре­дусматривают создание таких
конструкций, которые позволяют в сжатые сроки обеспечивать техническое
обслуживание самолетов при минимальных ма­териально-технических затратах.

Реа­лизация таких требований возможна при обеспечении удобного дос­тупа к агрегатам, стандартизации и унификации уз­лов, агрегатов, частей самолета и разъемов, применении встроенных систем автоматического контроля техничес­кого состояния систем и агрегатов самолета, эффективных систем поиска неисправностей и их устранения, увеличении ресурса и межрегламентных сроков службы.

Требования ремонтопригодности предопределяют возможность быстрого и дешевого восстановления отказавших (поврежденных) частей ВС, оперативного поддержива­ния численности самолетомоторного парка. Значимость этих требований возрастает в связи с постоянным усложнением самолетов и средств н

Военные самолеты – это самолеты, применяемые для военных фронтовых или соответственно боевых вылетов, рассчитанные на большую мощность без учета экономичности, в отличие от самолетов гражданской авиации.

От военных самолетов, в первую очередь, требуется большая скоороподъемность, а также большая скорость, высота и дальность полета. Для оперативного ведения воздушной войны служат дальние самолеты-бомбардировщики и ракетоносцы для уничтожения военных объектов. Самолеты-заправщики, которые на борту имеют только топливо, имеют возможность осуществления дозаправки боевых самолетов непосредственно в полете. К военным самолетам относятся дальние самолеты-разведчики с большой дальностью, высотой и скоростью полета. К тактическим военным самолетам принадлежат самолеты-истребители (или истребители), истребители-бомбардировщики, легкие бомбардировщики и самолеты тактической разведки. Современные военные самолеты часто конструируются как многоцелевые, т.е. они предназначены для боевого применения как штурмовики, истребители-перехватчики и разведчики.

1) Самолеты-истребители (истребители)

Самолет-истребитель – это очень быстрый одно- или двухместный боевой самолет для уничтожения (поиска) вражеских боевых самолетов, беспилотных ракет и др. Все современные истребители, в качестве привода, оснащены одним или двумя воздушно-реактивными двигателями. Скорость превышает звуковую и в настоящее время составляет около 3500 км/ч, скороподъемность поблизости земли свыше 200 м/с и максимальная рабочая высота до 30 000 м. Вооружение состоит из от 2 до 5 неподвижных автоматических пушек (с калибром от 2,0 до 3,7 см) и баллистических, радиоуправляемых или самонаводящихся ракет класса „воздух-воздух“. Кроме того, по большей части, самолеты-истребители обладают обширным электронным оборудованием, таким как радар, устройство распознавания и др.

Тяжелые самолеты-истребители или истребители-бомбардировщики объединяют в себе полетную мощность и летные качества истребителей – высокую боевую скорость и скороподъемность, большую максимальную высоту полета, хорошую маневренность – и качества легких и средних бомбардировщиков – большую дальность полета, хорошее вооружение, высокую грузоподъемность, обширное электронное и радиолокационное оборудование. В своих боевых возможностях они отличаются высокой многогранностью. К числу их целевого назначения, кроме всего прочего, относятся действия по перехвату и штурму наземных целей, поиск подводных лодок, поддержка соединений кораблей и наземных боевых операций, боевое использование в качестве истребителя сопровождения или самолета-разведчика. Вооружение и оборудование соответственно отвечает поставленным задачам. Радиолокационные установки стандартные; вооружение состоит, как правило, из крупнокалиберных пушек и ракет (класса „воздух-воздух“ или „воздух-земля“), а также бомб и торпед в качестве бомбардировочного вооружения. Так как в фюзеляже этих военных самолетов нет свободного места, то бомбы, ракеты и дополнительные баки с топливом подвешены под и на концах крыльев. Скоростные показатели тяжелых бомбардировщиков находятся между числом Маха 0,2 и 2, максимальная высота полета – от 15 000 до 20 000 м, дальность полета – от 1500 до 4500 км.

Раньше существовали особые ночные истребители, которые применялись специально для ведения боевых действий в ночное время суток, так как были оснащены приборами для слепого полета. Большинство же современных самолетов истребителей являются всепогодными, т.е. они могут совершать боевые вылеты при плохих погодных условиях, а также ночью. Также, часто всепогодные самолеты-истребители называются тяжелыми истребителями, так как они в большинстве случаев двухместные и оснащены двумя двигателями.

Суть эффективной противовоздушной обороны заключается в том, чтобы „перехватить“ налетающего противника и помешать выполнению его боевой задачи, а следовательно уничтожить. Для этого нужны самолеты-истребители, обладающие хорошей взлетной мощностью, высокими скоростями, с большой максимальной высотой полета и хорошим вооружением, а именно истребители-перехватчики. Прежде всего, они дислоцируются по близости с границей промышленных центров и других охраняемых объектов.

Применение скоростных и высоколетающих боевых самолетов (бомбардировщиков) с реактивным двигателем значительно повысило требования, предъявляемые к скороподъемности, скорости и максимальной высоте истребителей-перехватчиков. Отсюда вытекают следующие мощностные характеристики: максимальная скорость от 2000 до 2500 км/ч, дальность полета составляет 2000-3500 км. Такие показатели требуют, при средней взлетной массе от 7 до 12 т, использование двигателей с тягой от 3000 до 5000 кгс, чья мощность может увеличиваться еще на 50% благодаря дополнительному сжиганию топлива. Для кратковременного ускорения, особенно при наборе высоты, могут служить дополнительные ракетные двигательные установки.

2) Самолеты-бомбардировщики (бомбардировщики)

Самолеты-истребители, в первую очередь, применяются для решения оборонительных задач, для бомбардировщиков же на первый план поставлены наступательные действия. Бомбардировщик – это большой, тяжелый военный самолет с несколькими турбореактивными двигателями (реактивные турбины или турбовинтовые двигатели). На коротких взлетных полосах или при чрезмерной загрузке бомбардировщики часто оборудуются вспомогательными стартовыми ракетами.

Перед бомбардировщиками стоит задача быстро и на большой высоте атаковать разрывными зарядами в форме бомб далеко расположенные цели. Из-за большой опасности при приближении к цели во вражеском районе все больше бомбардировщиков усовершенствуются до ракетоносцев, которые запускают ракеты на большом расстоянии от цели и дистанционно управляют до ее поражения, в то время как сам бомбардировщик находится за пределами района, который контролируется силами противника. Взлетная масса современных бомбардировщиков достигает 230 т, а полная тяга свыше 50 000 кгс или соответственно суммарная мощность приблизительно 50 000 л.с. Бомбовая нагрузка зависит от тактического радиуса действия; она составляет без дозаправки до 16 000 км, при дозаправке в воздухе и того больше. Высота полета достигает 20 000 м, а численность экипажа может составлять 12 человек. Скорость современных бомбардировщиков превышает отметку в 2000 км/ч; на данный момент проектируются бомбардировщики, которые будут иметь еще большую скорость. Оборонительное вооружение состоит из ракет, пулеметов и автоматических пушек.

Как и все виды самолетов, бомбардировщики также можно классифицировать по разным аспектам, например по бомбовой нагрузке и тем самым взлетной массе (легкие, средние и тяжелые бомбардировщики) или в зависимости от их боевого назначения (тактические и стратегические бомбардировщики).

Тактические бомбардировщики – это самолеты, которые предназначены для решения определенных частных задач оперативного ведения войны, а именно для тактических заданий. Под этим подразумеваются такие действия, которые меняют ситуацию на определенном участке фронта и подчиняют себе всю цель, а следовательно уничтожение в определенном районе сосредоточения вражеских войск, районов сбора, огневых позиций, аэродромов, путей подвоза и т.д.

Исходя из такой постановки задачи можно сформулировать основные требования к тактическим бомбардировщикам: высокая боевая скорость, бомбовая нагрузка до 10 т, предельная дальность полета до 6000 км. Вследствие этих требований определяются конструктивные особенности, которые можно резюмировать следующим образом: самолет с одним, двумя, тремя или четырьмя реактивными двигателями со взлетной массой от 20 до 50 т, с управляемым на расстоянии оборонительным вооружением или ракетами класса „воздух-воздух“, электронным и радиолокационным оборудованием, с прочным корпусом, способным выдерживать большие нагрузки при полете на малых высотах. Из всего этого можно утверждать, что тактические бомбардировщики имеют определенное сходство с тяжелыми истребителями, как по своим задачам, так и по параметрам.

Стратегические бомбардировщики. Стратегия – это наука о ведении войны в больших масштабах. Слово стратегический означает масштабные боевые действия. Этим также объясняется боевое назначение стратегических бомбардировщиков. Данные военные самолеты предназначены для выполнения боевых задач в глубоком тылу противника.

Все бомбардировщики оснащены радиолокационными приборами (радар) для поиска цели и определения местонахождения атакующих самолетов-истребителей. Боевой вылет совершается небольшими группами или в одиночку. Так как современные бомбардировщики имеют практически такую же скорость, как и истребители, одинаковую с ними дальность полета, а также значительную обороноспособность благодаря ракетам класса „воздух-воздух“, на сегодняшний день часто отказываются от прикрытия истребителями.

Впервые бомбардировщики стали применяться во время первой мировой войны в одиночку или в составе небольших групп. Во второй мировой войне происходили „массированные“ боевые вылеты в составе крупных групп, которые насчитывали несколько сотен бомбардировщиков и летели под прикрытием самолетов-истребителей. Тогдашние бомбардировщики имели несколько двигателей, были относительно медленными, рассчитанные на максимальную бомбовую загрузку и большое количество оборонительного вооружения. Современные же, напротив, сконструированы для большой дальности, высоты, а также скорости полета. В большинстве случаев самолеты-разведчики летели впереди и предназначались для поиска цели. В отличие от тогдашних бомбардировщиком они были оснащены радиолокационными приборами. Благодаря светящимся авиационным бомбам, сбрасываемых на парашютах происходило обозначение цели. Особым типом считался пикирующий бомбардировщик, который с большой высоты приближался к цели, затем в быстром пикирующем полете таранил ее, и с небольшого расстояния сбрасывал одну или несколько бомб. После этого бомбардировщик снова выравнивал свое положение в полете. После проектирования межконтинентальных ракет бытовало мнение, что стратегические бомбардировщики устарели. Но благодаря их усовершенствованию до ракетоносцев и до летящих стартовых установок в последнее время они снова приобрели свое значение.

3) Самолеты-разведчики (разведчики)

Это многоместные, легко вооруженные истребители или бомбардировщики (без бомбовой нагрузки), которые оборудованы аэрофотокамерами, радиолокационными приборами, часто приборами для передачи телевизионных сигналов или также корабельные самолеты для воздушной разведки, т.е. для разведки позиций, объектов и др. противника, территории и погодных условий в интересах всех частей собственных вооруженных сил. Раньше в зависимости от максимальной дальности полета и области применения различали самолеты-разведчики ближнего и дальнего действий. Сегодня же говорят, зависимо от боевого назначения, о тактических и стратегических разведчиках. Существуют специальные самолеты-разведчики для ведения артиллерийского огня с воздуха, для разведки местности в зоне обстрела собственной артиллерии благодаря визуальной разведке или аэрофотоснимкам, а также для контроля замаскированности собственной артиллерии. Такие самолеты называют артиллерийскими самолетами. Они относятся к разведчикам ближнего действия или тактическим разведчикам.

4) Военно-транспортные самолеты

Это большие самолеты, которые имеют от 2 до 8 двигателей и дальность совершения полетов от 3000 км и больше. Они имеют легкое вооружение или вообще не вооружены и предназначены для транспортировки предметов снабжения для войск (продовольствие, топливо, боеприпасы, оружие, также орудия, танки, транспортные средства и др.). Военно-транспортные самолеты применяются для высадки (десантирования) воздушно-десантных войск, а также перевозки войск при перегруппировках. Парк транспортных средств военно-транспортной авиации состоит из транспортных самолетов, грузовых планеров и вертолетов, которые оснащены соответствующим образом.

Для выполнения воинских воздушных перевозок используются различные транспортные самолеты и вертолеты военной и граждан­ской авиации.

С точки зрения перевозок транспортные самолеты и вертолеты можно классифицировать по назначению, грузоподъемности и типу установленных двигателей.

По назначению транспортные самолеты (вертолеты) подразде­ляются на пассажирские, грузовые и грузопассажирские.

Пассажирские самолеты предназначены в первую очередь для перевозок пассажиров, багажа и почты, для чего они имеют со­ответствующее бытовое оборудование, обеспечивающее удобства и комфорт пассажирам. Перевозки в них грузов можно производить в небольших количествах в багажниках, расположенных под полом пассажирской кабины.

Пассажирские самолеты гражданской авиации в зависимости от пассажировместимости, дальности полета и класса используемых аэродромов подразделяются на магистральные и самолеты местных воздушных линий.

Магистральные самолеты в свою очередь делятся на дальние (ДМС), средние (CMC) и ближние (ВМС).

К ДМС относятся: Ил-62, Ту-114 и первый сверхзвуковой пасса­жирский самолет Ту-144.

К CMC -Ту-154, Ту-104, Ан -10, Ил-18.

К ВМС - Ту-134, Ту-124.

К самолетам местных -воздушных линий относятся: Ан-24, Як-40, Бе-30, Ан-2.

Грузовые самолеты предназначены для перевозки грузов и техники, имеют специальное оборудование, обеспечивающее погрузку грузов и их крепление, а также необходимые климатические ус­ловия внутри грузовой кабины во время полета. В случае необходи­мости они могут оборудоваться съемными сиденьями для перевозки людей.

К грузовым самолетам относятся: Ан-24т, Ан-12, Ан-22 и верто­леты Ми-4А, Ми-8, Ми-6, Ми-10.

Грузопассажирские самолеты предназначены для перевозки пассажиров и грузов. В грузопассажирских самолетах имеются отдельные помещения для пассажиров (обычно верхний этаж) и грузов (обычно нижний этаж) или пассажирское оборудо­вание кабины выполняется легкосъемным, что позволяет в случае необходимости быстро приспособить самолет (вертолет) к комбини­рованной или чисто грузовой перевозке. Самолеты, приспособлен­ные к -быстрому переоборудованию из пассажирского в грузовой ва­риант, называются конвертируемыми самолетами.

По грузоподъемности транспортные самолеты и вертолеты подразделяются на легкие, с нормальной десантной нагрузкой до 11 т, - средние - до 20 т и тяжелые - более 20 т.

Легкие самолеты и вертолеты в работе органов военных сообще­ний используются сравнительно мало - лишь для выполнения от­дельных небольших перевозок или в условиях, когда в районе вы­грузки нет аэродромов, пригодных для посадки самолетов средней грузоподъемности.



Для воинских перевозок в настоящее время наиболее -широко используются средние самолеты: грузовые типа Ан-12 и пассажир­ские типов Ил-18, Ту-104, Ан-10 и Ту-154. Однако извест­но, что по мере увеличения грузоподъемности и пассажировместимости самолетов производительность труда работни­ков воздушного транспорта возрастает, а себестоимость перевозок снижается, создается возможность выполнить заданный объем пе­ревозок меньшим числом самолетов, что способствует уменьшению частоты движения самолетов в районах аэропортов и улучшает без­опасность полетов. Учитывая развитие воинских воздушных перевозок, есть все основания полагать, что для их выполнения все большее применение будут находить тяжелые транспортные самолеты грузоподъемностью 100 т и выше и пассажирские или конвертируемые самолеты вместимостью 300-500 человек и более.

По типу установленных двигателей современные транспортные самолеты и вертолеты подразделяются на имеющие газотурбинные (ГТД) и поршневые (ПД) двигатели.

Самолеты с газотурбинными двигателями в свою очередь делятся на имеющие турбореактивные двигатели (ТРД) и турбовинтовые (ТВД).

Самолеты с турбовинтовыми двигателями имеют гораздо меньший по сравнению с реактивными удельный расход топлива.

В настоящее время все большее распространение получают транспортные самолеты с двухконтурными турбореактивными двигателями (ДТРД), занимающими по экономичности промежуточное положение между ТВД и ТРД.

С дальнейшим ростом скоростей транспортных самолетов наибо­лее перспективными являются самолеты с бескомпрессорными во­здушно-реактивными двигателями, прямоточными (ПВРД) и пуль­сирующими (ПуВРД), имеющими при крейсерских скоростях поле­та, соответствующих числу М > 3, лучшие по сравнению с ДТРД эксплуатационные характеристики.

С точки зрения, ведомственной принадлежности транспортные самолеты (вертолеты) делятся на военные и самоле­ты (вертолеты) гражданской авиации.

На военных самолетах устанавливается дополнительное оборудование, связанное с выполнением боевых задач (вооружение, спе­циальное оборудование для парашютного десантирования войск, техники и грузов, система заправки топливом в полете и т. п.).

Представитель деловой авиации.

Давно прошли те времена, когда аэроплан (в последствии самолет) был просто . Как говорится сам в себе и для себя. Потребности людей меняются, технический прогресс совсем не стоит на месте и самолеты практически не летают ради интереса, экстрима или чего-либо подобного. Хотя, конечно, справедливости ради стоит сказать, что и это тоже имеет место. Однако все же меркантильно- полезное применение авиации преобладает. А так как в современном мире областей ее применения уже достаточно много, то и разнообразие ее достаточно велико.

Итак, . Они определяются согласно нормативным документам. Есть такой серьезный (по виду:-)) документ: Воздушный кодекс РФ. Так вот в нем определено, что авиация имеет три вида: гражданская , государственная и экспериментальная . К гражданской относится собственно гражданская, гражданская коммерческая и авиация общего назначения. С первыми двумя, я думаю, понятно, а «общее назначение» — это всевозможные полезные работы, как-то: сельхозработы, медицинская помощь, помощь полиции, частные и корпоративные перелеты, обучение, и т.д. Экспериментальная авиация применяется для проведения различных экспериментальных работ и испытаний техники (в т.ч. и авиационной). А государственная – это военная авиация и государственная авиация специального назначения , такая, как например авиация МЧС или есть еще авиация МВД для выполнения различных спецзаданий. Интересно, что как государственная, так и экспериментальная авиация тоже могут быть использованы в коммерческих целях. Это определено в вышеупомянутом кодексе.

Транспортник АН-12

Всем известный пассажирский Boeing 737

Вот так оно все звучит официально. А теперь, не глядя в нормативные документы, я еще кое-что добавлю и от себя. С гражданской авиацией все более-менее ясно. Это пассажирская, транспортная и грузо-пасcажирская. Их функции понятны всем. А яркие их представители – это, например, трудяги ТУ-154 и Боинг-737, Ан-12 и Ил-76.
Что касается авиации общего назначения, то хоть в кодексе этот название и прописано, но рядом с ним существуют и другие определения, и иной раз не всегда понятно которое из них вмещает в себя другое. Разбираться в этом не будем, просто я еще упомяну кое-какие , точнее их названия, которые сейчас употребляются в авиационной практике.

Интерьер салона самолета бизнес-авиации.

За рубежом уже достаточно давно существует, а в России только набирает обороты так называемая деловая авиация или «Business aviation» в англо-американском варианте. Это обычно специальные самолеты (ну и, конечно, комплекс их технического обслуживания) малой вместимости, но совсем немалого комфорта:-). Они используются для индивидуальных и корпоративных полетов и, конечно же, для оказания специальных услуг. Один из представителей – это Gulfstream G500.

Самолет ЯК-52.

Спортивный ЯК-55М

Спортивный СУ-26М.

Заслуженный АН-2

Далее можно выделить спортивную авиацию и авиацию первоначального обучения. Иначе говоря аэроклубовскую. Это те самолеты и вертолеты, на которых люди учатся летать и далее совершенствуют свои навыки полета. В России система аэроклубов в процессе революционных преобразований, начиная с перестройки и далее, была основательно порушена. Но кое-что осталось и сейчас даже потихоньку развивается. Представители этого вида авиации у нас это, в основном, ЯК-52, ЯК-55, СУ-26 и трудяга ЯК-18Т. Используется, конечно, в этой системе и АН-2 (в основном для вспомогательных целей, например для вывоза парашютистов). За рубежом это чаще всего Cessna-172, Piper PA-28 Warrior и Robinson R-22.

Piper PA-28 Warrior

Вертолет Robinson R-22

Естественно, что все эти летательные аппараты используются также и в коммерческих грузовых и пассажирских целях. Ведь аэроклубы все, в основном, частные. Да и просто один самолет может быть в частном владении. Тогда человек, имеющий удостоверение частного пилота, может летать на нем в собственных целях (даже просто для удовольствия:-)). Но это, правда, больше относится к США и западным странам. В России для этого пока нет ни законодательной базы, ни технических и финансовых возможностей. А жаль… Было бы неплохо иметь такой «семейный самолетик» и летать на нем по выходным в гости в другой город:-).

В связи с вышеупомянутым нужно обязательно сказать, что вообще сейчас сформировалось такое понятие, как малая авиация . Законодательно это понятие четко не определено (хотя, на мой взгляд оно наиболее близко к авиации общего назначения), но обычно летательные аппараты малой авиации имеют малый взлетный вес (обычно до 9000 кГ) и берут на борт не более 18 пассажиров. Конечно же к малой авиации относится и вся инфраструктура обслуживния, т.е. аэродромы, системы управления воздушным движением, техническое обслуживание. Летательных аппаратов малой авиации сейчас по миру становится все больше. В США, например, их зарегистрировано уже более 280-ти тысяч. Соответственно растет и количество взлетных полос и площадок. По статистике более 80% всего, что летает в мире работает в малой авиации. То есть малая авиация завоевывает мир:-). Вот такие дела. Но оставим ее в покое и вернемся к серьезным :-).

Хотя я, собственно, уже все перечислил. Но обязательно стоит сказать, что некоторым особняком от этого деления стоит военная авиация (хоть она и является частью государственной). Дело в том, она сама тоже имеет виды и кроме того некоторые из них еще и делятся на рода. Довольно интересное деление и это уже тема другой статьи, а точнее второй части статьи о видах авиации.

Фотографии кликабельны .

Летные геометрические и весовые характеристики, общая компоновка, применяемое оборудование, а также конструкция отдельных частей во многом определяются назначением самолета. По назначению все самолеты можно разделить на две большие группы: 1) гражданские и 2) военные.

Гражданские самолеты
Гражданские самолеты служат для перевозки пассажиров, грузов, почты и для обслуживания различных отраслей народного хозяйства. Они, в свою очередь, могут быть разделены на следующие основные типы.

1. Пассажирские самолеты, предназначенные для перевозки пассажиров, багажа и почты. В зависимости от дальности полета, количества перевозимых пассажиров, размеров и типа взлетно-посадочных полос эти самолеты делятся на магистральные и самолеты местных линии.

Магистральные самолеты в зависимости от дальности полета делятся на:
а) ближние с дальностью полета 1000…2000 км;
б) средние с дальностью полета 3000…4000 км;
в) дальние с дальностью полета 5000…11 000 км.

Самолеты местных линий подразделяются на:
а) тяжелые с числом пассажиров 50…55;
б) средние с числом пассажиров 24…30;
в) легкие с числом пассажиров 8…20.

2. Грузовые самолеты, основным назначением которых является перевозка различных грузов.

3. Самолеты специального назначения, применяемые в различных областях народного хозяйства. Это самолеты полярной, сельскохозяйственной, санитарной авиации, самолеты для геологической воздушной разведки, для охраны лесов от пожаров, для аэрофотосъемок и др.

4. Учебные самолеты, служащие для подготовки пилотов. Они подразделяются на самолеты первоначального обучения и переходные. Самолеты первоначального обучения — это двухместные самолеты, достаточно простые в освоении и технике пилотирования. Переходные самолеты служат, для обучения пилотов полетам на находящихся в эксплуатации серийных самолетах.

Военные самолеты служат для нанесения ударов с воздуха по военным объектам, коммуникациям, живой силе и технике противника в его тылу и в прифронтовой полосе, для защиты своих объектов.и войск от авиации противника, для высадки десантов, транспортировки войск, техники и грузов, для разведки, связи и л.

В зависимости от конкретного назначения военные самолеты можно разделить на следующие типы.
1. Бомбардировщики, назначением которых является нанесение бомбовых ударов по важнейшим объектам, узлам коммуникаций, местам сосредоточения техники и живой силы противника в его тылу.

2. Истребители, которые служат для борьбы с авиацией противника. Они, в свою очередь, могут быть разделены на несколько видов:
а) истребители сопровождения, предназначенные для защиты от авиации противника своих бомбардировщиков, выполняющих боевую задачу;
б) фронтовые истребители, обеспечивающие защиту своих войск от
авиации противника над полем боя и в прифронтовой полосе;
в) истребители противовоздушной- истребители перехватчики, назначением которых является перехват и уничтожение бомбардировщиков противника.

3. Истребители-бомбардировщики, снабженные бомбами, ракетным и пушечным вооружением и служащие для нанесения ударов по объектам в районе передовых позиций и в ближнем тылу противника и для уничтожения его авиации.

4. Военно-транспортные самолеты, используемые для высадки десантов, транспортировки войск, техники и различных, грузов.

5. Самолеты-разведчики, предназначенные для ведения воздушной разведки в тылу противника и над театром военных действий.

6. Вспомогательные самолеты, куда относятся самолеты-корректировщики, самолеты связи, санитарные и т.п.

Основные части самолета и их назначение
Основными частями самолета являются крыло, фюзеляж, оперение, шасси и силовая установка.

Крыло — несущая поверхность самолета, предназначенная для создания аэродинамической подъемной силы.

Фюзеляж — основная часть конструкции самолета, служащая для соединения в одно целое всех его частей, а также для размещения экипажа, пассажиров, оборудования и грузов.

Оперение — несущие поверхности, предназначенные для обеспечения продольной и путевой устойчивости и управляемости.

Шасси — система опор самолета, служащая для взлета, посадки, передвижения и стоянки на земле, палубе корабля или на воде.

Силовая установка, основным элементам которой является двигатель, служит для создания тяги.

Кроме этих основных частей самолет имеет большое количество различного оборудования. На нем устанавливаются системы основного управления (управления рулевыми поверхностями: элеронами, рулями высоты и направления), вспомогательного управления (управление механизацией, уборкой и выпуском шасси, створками люков, агрегатами оборудования и т.п.), гидро и пневмо оборудование, электро оборудование, высотное, защитное оборудование и др.

Классификация самолетов по схеме
Классификация самолетов по схеме производится с учетом взаимного расположения, формы, количества и типа отдельных составляющих самолет агрегатов. Схема самолета определяется следующими признаками:

1) количеством и расположением крыльев;
2) типом фюзеляжа;
3) расположением оперения
4) типом шасси;
5) типом, количеством и расположением двигателей.

Полностью охарактеризовать схему самолета можно лишь на основании всех этих пяти признаков. Классификация же лишь по одному или нескольким из них не может дать полного представления о схеме.

По количеству крыльев все самолеты делятся на бипланы и монопланы, а последние в зависимости от взаимного расположения крыла и фюзеляжа — на низко планы, среднепланы и высоко планы. По типу фюзеляжа самолеты делятся на одно фюзеляжные и двух балочные. В зависимости от условий взлета и посадки самолёты могут Иметь шасси колесное, лыжное, поплавковое. У гидросамолетов фюзеляж может выполнять функции и лодки. Встречаются смешанные схемы: колесно-лыжное шасси, лодка-амфибия.

В качестве основных двигателей на современных самолетах применяются поршневые и газотурбинные двигатели. Наибольшее распространение в настоящее время получили газотурбинные двигатели, которые, в свою очередь, делятся на турбовинтовые, турбореактивные, турбореактивные с форсажем и турбореактивные двухконтурные. Выбор типа двигателей, их количества и расположения определяется в значительной степени назначением самолета и оказывает существенное влияние на его схему.